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A position differential game with a fixed termination instant is examined,the
payoff in which is the value of a specified function of the final state., A fam-
ily of functions which are treated, in accord with the dynamic programming
method, as generalized potentials is defined. It is shown that a function of
the differential game*s value coincides the lower envelope of this family of
generalized potentials. The problem on the existence of players® strategies
optimal in -the -large is investigated as well., The material in this paper ad-
joins the investigations in {1 — 9],

1, Let a controlled system's motion be described by the differential equation
T =it uv), flt, ¥ X R"X P XQ—>R" (L1)
te= 4,8, z=R", uss PC RP, v&E=QC R

Here P and () are compacts; f is a continuous function satisfying a Lipschitz con-
dition in variable x in each domain [f5, @] X D X P X Q, whete D is some
bounded set in R™. It is assumed that the initial points x, = z [¢,] belong to
some compactum X,;,. The symbol X, denotes the aggregate of all points zy for
which a solution exists for the contingency equation

Flleco{f(t,z,u,v) ue P, vEQ}, (<t

z [t = Xy, zlt] = 2¢

It is assumed that the sets Xt (£o <C T <C ®) are nonempty and uniformly bounded,
we shall use the following notation:

H={(t,$): to<t<'&, .’I:EX,}

We examine a differential game in which the payoff is the quantity o (z [8]),
where @: R"™— R s a specified continuous function and {91, is the system's
phase state realized at the final instant-z = 8.

It is assumed that the first player, who has control u at his disposal,selects
pure position strategies U —- u (¢, ) and strives to minimize the payoff's value
and the second player, who has control v at his disposal, selects the counterstrategies

V¥ = v (¢, «, u) and strives to maximize o (z [@]). In this game there exists,
for each initial position (¢, z,) & H , a saddle point which is formed by the pair

(Ue, V"), where U, and WV * are a pure strategy and counterstrategy , extremal
to the bridges

Wa = {(t, 2) € H: ¢ (¢, ©) < ¢ (L, 2:)} (1.2)
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W‘Do = {(t7 .’L‘) E H: CO (tv .'.E) > co (t*v x*)} (1~3)

respectively [3]. Here ¢, H — R isa function of the game's value, Itis well
known also that this function can be constructed in various ways [3 — 9], In the pre-
sent paper we show that function ¢o can be determined as the lower envelope of a
certain family of generalized potentials,

2. Let us define the family of generalized potentials, For the point (¢*, 2, z,,
Uy), where (fy, 2y, Uy) = H X P and t* < [2, 8], the symbol G (¢*, 1.,
Zy, Uy) denotes the aggregate of points z* for which a solution exists of the con-
tingency equation
e co{f @t zlt] uy, v): vE 0}, e

zlt ] =z, z[t*]=2*

(l.e.. G (t*, t,, %,, u,) is the closure of the attainability domain for system (1, 1)
under a constant control  u (f) = u, and all possible program controls » (#) & Q,
b < E< tH).

A function @: H — R is called a generalized potential if the following three
conditions are fulfilled for it:

1°, Function ® is continuouson H.

2°, The boundary condition

o 2)=0@) for z=X (2.1
is satisfied .
3°. The inequality
o (t*, 2) — o (g, Tx) <0

lim min max —.

t*rt 0 uSP xeG6 (1%, t,,%,, U)
is valid for any point (2, T,) &= H, ¢, < ¥,
The aggregate of functions « satisfying these three conditions is denoted £. We
indicate certain statements valid for set ,

(2.2)

Lemma 2,1, Set Q isnonempty.
To prove this it suffices to consider the function

@ (ty, z,) = min max o(z), (upzeEH (2.3)
ueP xe&G (0, 1,, x,, ¥) A
and to verify directly the fulfillment of conditions 1° — 3 ° for it,
Lemma 2,2, Forany function o, Q and any number T & [¢,, 9] the
function ®* defined by the relation
Oy (L, Ty) for ty e 1, '0], Ty EX(.
O* (ty, 2,) = min max Oy (T, Z} (2.4)

USSP xG (T, t,, Xq, )
for tx € g, s 2e = X,

belongs to set Q.
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Lemma 2,3, The lower envelope ®y of any finite collection of functions
0, EQ (i=1,2,...,m) defined by the equality

O (Lr Z4) =1mi21m‘9i (tar Z4)s Usr ) EH (2.%)

s

belongs to set .

Lemma 2,2 and 2,3 are proved by simple verification of conditions 1° —3° for
the functions w* of(2,4)and 04 of(2.5),

For the next statement we introduce some notation, Let £ & Xgpand > 0;
we set

dy (z, ) = o (2) — min {o (N}: y & Xo (1 S (z, )}
S@Ep=wWesr:|y—z|<p}
d* (f) = max {d, (z,B) : z = Xs}
d(a) =d* (xexph (@ — &) (=>0)
where A is the Lipschitz constant with respect of variable z in the domain H X

P X Q for function f , We note that the continuity of function ¢ implies d (a) —
0 as a—> 0.

Lemma 2,4, Forany points (t,, 2,) & H and (fy,2*) = H and for

every function ® &= Q we can construct a function ©° = Q satisfying the inequality
©° (ty, 2%) < @ (8y, 24) + 2 (| ¢ — z* ) (2.6)
We present the proof of this lemma, Let
r()) =lze —a*[expd (¢t — t4)
We consider the function m: H — R  defined by the equality
N =minfoEy):ysXitNSEr@O))+dlze —2*))
It can be proved that function 7 satisfies the inequalities
Nt 2*) <0 (s 2e) Tdlze—2* ) 1@, 2)>0() for 2 X,

is continuous and that condition 3 °is satisfied for it Further, it canbe verified that the func-
Hon @ (¢, 2) = min {n (¢, 2), © (&, )}, (tz) = H

belongs to class € and satisfies inequality (2.6),
We investigate the lower envelope of family €

0o (t,2) = inf {0 (t,2): 0 =Q}, (LAO)EH (2.7
The following statement is valid.

Theorem 2.1, The function @ of (2.7) is upper ~semicontinuous on H; the
function g is continuous in & on X, for edch ¢ & [¢,, 8] ; the relations
@ @2 =0@), z€ X (2.8)

inf min max g (t*, ) > g (L Zy) (2.9)
tre[t*, 0] uEP x&G (1*, 1y, X4y )

are valid, Vinz)EH, t, ¥
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Proof, The upper~semicontinuity of function @y follows directly from its de -
finition as the lower envelope of the set Q of continuous functions, The continuity
in z of function @, derives from Lemma 2.4, Equality (2,8) follows immediately
-from (2,1) and (2.7), Let us prove inequality (2, 9), We assume the contrary, Leta
point (#y, #4) & H, thenumbers 7= (f,,®] and @ > 0 andthe control

u, & P exist such that

max oy (T, T) < 0 (L4, Ty) — 3 {2.10)
26 (T Egy Xus Ua)

By the definition of function ®, we can find, for any point z* &= G* = G (1, ¢,

Ty, Uy) »a function @ (- | 2*) € Q s0 as to fulfill the inequality o (1, z* | z*)
< @ (T, **) 4~a. The functions @, T, 2} and © (3, | 2*) are continuous

in Z ; therefore,a number § (z*) > 0 exists for any point z% &= G¥* ,such that

o (T, 2] 2%) < 0o (v, 2) + 22 for z& S (2%, B (%))
We obtain a covering of compactum G#¥ by spheres S (z*, f (z*)). From  this
covering we can separate a finite subcovering S, (i=1,...,m) sothat

o; (T, )< o7, 2) + 22, 2 8;, (=12....m 2.11)

where the @; are some functions from £. Let w, bethe lowerenvelope of the aggre-
gate {w;, i=1,2,...,m}. AccordingtoLemma 2,3, @, & Q, andinequality

0y (7, 8) < 0 (7, @) + 28, z& G* (2.12)

follows from (2,11), We introduce into consideration the function ®* of(2.4) for
the function ®, . According to Lemma 2,2, ©* & Q. Theinequality 0* (2, Z,)
S max{o, (T, 2%) : 2% & G*} follows directly from the definition of set
G* =G (v, by, T4, Uy) and of function ©* of (2,4), Allowing for estimates (2.12)
and (2, 10 ), this inequality can be prolonged as follows:

0F (Lg Tp) < max o, (7, 2*)<C max wy (7, %) + 20 < 0o (ty, T,) —
X*E{;‘ x*g{;t
Thus , we find that a function ©* & Q exists for which @* (fy, Z,) << 0, (#, 4)-

We have arrived at a contradiction with the definition of function ®g. Inequality
{2, 9) and Theorem 2, 1 have been proved,

3., Let us show that
Wo (Bey Zy) = Co (tar X)y by, 2y) = H (3.1

where ¢p (fg, x,,) is the differential game's value in the class of pure position
strategies U -+ u (¢, 2) and counterstrategies V" -+ v (£, &, u) for the initial
position  (#g, ,). At first we present the following statement.

Lemma 3,1, Theset
W= {(t,z) = H:o(t,x) < c} (3.2)

is Uy -stable [3] for any number ¢ and any function o &= & .
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To prove this lemma we can consider the set
Woe={t, )= H:o(t,2)<c +a(t—1)} (@>0)

and , using (2,2), verify that it is wu, -stable, Then the u, -stability of the set W
of (3,2) can be obtained as a consequence of the u, -stability of set W, in the Lim-
itas - 0.

Also valid is the following

Lemma 3,2, Theset
Woe = {(t, 2) = H: 0, (1, z) < ¢} (3.3)

is v=-stable [3] for any number ¢ ,

The validity of this lemma follows immediately from (2,9), We make use of
Lemmas 3.1 and 3,2 to prove equality (3, 1), For a specified position (f, Z,) and
for some number B > 0 we define a function ®g so as to fulfill the inequality

0 (ty, Z4) < 0 (L, 2,) + P. Weconstructa positionstrategy Up -+ ug (t, x)
extremal to set W of (3.2) wherein ® = @3 and ¢ = wy (¢,, 2,). Then,ac-
cording to the results in [3 ], the inequality

max {o (z): z & X [9; ¢t,, z,, Ugl} < o (¢4, ) + B (3.4)

is valid for this strategy .

Here and below X [9; ¢, z,, Ul and X [¥, t,, x,, V¥] are thesets of
points z I8 t,, z,, U] and z [¥; ¢, z,, V¥] that are realized at instant & by
all possible motions generated by strategies U —- u (¢, z) and counterstrategies

V% -+~ v (¢, z, u), respectively, On the other hand, the inequality

min {0 (z) 1z & X [0} £, z,, V) > 0 (8, 2) (3.5)

is valid for the counterstrategy V% -+ v (¢, x, u) extremal to the set WO  of
(3.3) wherein ¢ = @, (f,, *y) As B >0, from(3.4)and(3,5) we obtain

infmax{o(r):ze=X[¥t,, 2, U]} = (3.6)
U

max min{o(z):z < X [0; ¢, 2, V*]}
Vu
Hence it follows that the quantity ® (fy, z,) coincides with the value €y (4, Z4)
of the differential game in the class of strategies I/ = u (#, ) and counterstrategies
Ve v (¢, z, u).

It is well known that not only allsets W of (3.2) but also the set
W= {(t,2) & H: 0o (t, 7) = ¢o (¢, 2) < ¢} (3.7

corresponding to the lower envelope  @p = Cp and to any number ¢ are Uy -stable,
The lower bound in (3. 6) is reached by the strategy U, -~ %, (f, Z) extremal to the
set W.° of (3,7) with ¢ = ¢ (f4, Z4). It is well known also that the function
Cp == ®p is continuous on H,
We note the following circumstance. As shown above,the u,-stability of the
set W of (3.2) follows from the condition @ < Q . However,the converse is
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false, i,e., the membership of a function ®, toclass Q does not follow from the

Uy -stability of set W.® of(3,7), As an example, where the lower envelope @,
does not satisfy condition 3 we can cite the well-known game [1] specified by the
equation

xl.zxz + v, x2'=u,|u|\<\i,}v|<i,O“~=t0<t<0=2

and by the function o (z) = |z, | . Here

. . %, 2) — 0 (g,
lim min max o (2, ztl Ooller Zw) _ g ty >0
Pt OUSP XSG (1, 1, %00 u) —

at points (24, Zy), where #, & [1,2) and Z4 + (2 — )z, = 0.

4, Letus consider the case when ¢y = ©y & §2. In this case we construct a

position strategy U° -+ u° (¢, z) optimal in~the-large, for which the inequality
o (z [8]) < ¢o (v, x [v]) is valid for any motionz [¢] = z [¢; ¢t,, z,, U°] and any

instant v [2,, #]. Wenotethatthestrategy U, extremaltotheset W, ° of (1.2)

ensures the fulfillment of the inequality o (z [8]) <C ¢q (¢4, Z¢) for the specified

initial position  (Z4, Z4) ; but an instant © & [¢,, ®] and a motion z [t] = z [#;
ler T4y Uel can existsuch that s (z [8]) > cofs, 2z [1]).

It is well known that the strategy ©° -+ ° (¢, z) , optimal in-the-large,can be
constructed when the function ¢, is continuously differentiable in ¢ andin =z at
points (f, 2) = H where ¢y (1, z) > 6y = min {0 (z) : * & Xy} [3]. As an example
in which the function ¢, = g is not continuously differentiable but does belong to
the class £ of generalized Bellman functions, we can cite the game specified by the
equations z;" =23, Ty =Ty Ty = U — V1, T = Uy — vy [uy [ <Ay |4y ] <

My (02 -+ 2.9 Ay, My < Ay and by the function o (z) = z,® + a2
Thus,let ®y, & Q. For a positive parameter @ we define the functions & :
H—> R and ug: H-— P which associate with the point (f,, z,) & H a num-
ber 8y (fy, Te) > 0 and a vector Ug (fy, T,) € P satisfying the inequality

max, @p (ty + O (fys y), 2) << @9 (B, T4) + @Bo (84, 4)
TE G (b + Oy (tyy Zu)s tes Ty, Ua (B, T))
The existence of such functions 8x and % followsfrom (2.2), We now assume that
the function uw’: H — P associates a vector u° (¢,, z,) with the point (¢, Z,)
€ H ,which is the limit of some sequence Uq, (Z,, z,) (k =1, 2, .. .), where
a0 as k— oo (the sequence of numbers o depends,in general,on the
point (Z4,%,) ). To determine the motions generated by strategy U° —+ u° (¢, z)
we require the function &,°: H — R.  This function is defined as follows: for a pre-
scribed parameter € >> 0 and for the point (2, z,) & H we determine a number
a, > 0 so as to fulfil the inequality

(e 4) — b, (B, T) | <&, @ <&
and we set  8g° (2., Z,) = Oq, (t4, Z,). We define the motion z [¢; t,, z,, U°l
(2, <X £ < 9) generated by strategy U° —+ u° (¢, ) as the limit of a sequence
of Euler polygonal lines, However,in contrast to [3], wherein the partitionings A of
the segment [Z,, 8] can be selected in advance at the initial instant, here we examine
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partitionings A that are formed during the game by the function §,°. Fora chosen
parameter ¢ > ( and for the control v [¢] (¢, < ¢ <C @) realized by the second
player, the approximate motion (Euler polygonal line) z [t] = z [1; ¢, z,, U°,

v [+1, 8;°] can be meaningfully determined as the motion generated by the second
player's control v [t] (2, <C ¢ < ) andby thefirst player's piecewise-constant control

ultl =uw @, z[v'), v<t<<t +68° (7, z[v'])

Formally the approximate motion z [#; ,, z,, U°, v [-], §;° ] is determined
in accord with [5]. Then,every limit,uniform on [¢,, @] ,of the sequence of ap-
proximate motions z [¢; £y, 24, U°, vy [-1, 8:.°], where &, >0k =1,2,...)
is some sequence of numbers converging to zero, is called a motion z {¢#; ¢, z,, U°l.
It can be shown that under the given definition of motions the strategy U°® = u° (¢, z)
is optimal in~the -large,

When ¢, = 0y && Q we can construct a strategy [J(®) — u® (¢, z), €-optimal
in-the-large, for which the inequality o (z [8]) < ¢, (¢, z [#]) ¢ Isvalid for
any instant ¢ & [t,,®] and for every motion z [¢] = z [4; ¢,, z,, U®] . The con-
struction of this strategy and of the motions it generates can be given within the frame-
work of an extremal construction [3],
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