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A position differential game with a fixed termination instant is examined ,the 
payoff in which is the value of a specified function of the final state. A fam- 

ily of functions which are treated, in accord with the dynamic programming 
method, as generalized potentials is defined. It is shown that a function of 
the differential game’s value coincides the lower envelope of this family of 
generalized potentials. The problem on the existence of players * strategies 
optimal in -the -large is investigated as well. The material in this paper ad- 

joins the investigations in [ 1 - 91. 

1. Let a controlled system’s motion be described by the differential equation 

2’ = f (t, 2, u, v), f: [to, 61 x R” x P x Q -+ R” (1.1) 

1 E [to, 61, t E R”, u E P c RP, u E Q c Rq 

Here P and Q are compacts; f is a continuous function satisfying a Lipschitz con- 
dition in variable t in each domain [to, e,] X D X P X Q, where D is some 

bounded set in R”. It is assumed that the initial points x0 = 5 [loI belong to 

some compactum Xt,. The symbol XT denotes the aggregate of all points zT for 

which a solution exists for the contingency equation 

2’ k1 E co {f (t, 5, u, v): u E P, 21 E Q}, t, < t < z 

2 L&J E Xto, 5 121 = XT 

It is assumed that the sets XT (lo < z < fi) 
we shall use the following notation : 

are nonempty and uniformly bounded, 

H = {(t, 2): tlJ < t < 6, t E X,} 

We examine a differential game in which the payoff is the quantity o (IL: [61), 
where 0: R” -+ R is a specified continuous function and 2 i81 . is the system *s 

phase state realized at the final instant.c-r = 6. 
It is assumed that the first player, who has control u at his disposal,selects 

pure position strategies U -+- u (2, ;) and strives to minimize the payoff’s value 

and the second player, who has control u at his disposal, selects the counterstrategies 
vu + 2; (t, 5, u) and strives to maximize o (Z Iti]). In this game there exists, 

for each initial position (t.+, z*) E H ) a saddle point which is formed by the pair 

(U,, VP), where U, and Veu are a pure strategy and counterstrategy, extremal 

to the bridges 

W,,” = ((1, 5) E H: co (1, x) < co (tg, z,)) (1.2) 
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(1.3) 

respectively [3 1, Here co: H --f R is a function of the game’s value, It is well 
known also that this function can be constructed in various ways [ 3 - 3 1. In the pre- 
sent paper we show that function CO can be determined as the lower envelope of a 
certain family of generalized potentials. 

2. Let us define the family of generalized potentials. For the point (t*, S,, x* , 
+), where (&, Z*, r&) E H X P and t* E b!, 61, 
z*, u*) denotes the aggregate of points 

the symbol G (t*, t*, 
z * for which a solution exists of the con- 

tingency equation 

(Le.. G (t*, t,, z*, u*) is the closure of the attainability domain for system (1.1) 
under a constant ccntrol 
1, < t\r t*). 

u (2) = u* and all possible program controls v (1) E Q, 

A function o: H -+ 8 is called a generalized potential if the following three 
conditions are fulfilled for it: 

1”. Function w is continuous on H. 

2”. The boundary condition 

o@,z) = a(z) for SE-Y (2. I) 
is satisfied . 

3”. The inequality 

lim min max 0 (t”, 5) - w (t*, z*) 
t* - t* \co (2.2) 

t*r+o UEP axzG (t’, 1.,.x*, u) 

is valid for any point (t* , q) E H, t* < 6 , 
The aggregate of functions o satisfying these three conditions is denoted 62. We 

indicate certain statements valid for set 8. 

Lemma 2.1, Set Q is nonempty. 
To prove this it suffices to consider the function 

o(t,, x*) = min max 
UEP XEG @3. f,, x,, U) 

o(x), (&+zr ‘c*)EH (2.3) 

and to verify directly the fulfillment of conditions lo - 3 ’ for it. 

Lemma 2.2. For any function o* E 51) and any number z E [to, 61 the 
function or* defined by the relation 

i 

@*hb =*) for t* Ei [T, 431, 5* E x,* 

o* (t*, 5,) = min max 
UEP xEG ct. t,, x., u) 

W*(% 2) 

for t+ E PM G + E X,* 

(2.4) 

belongs to set 52. 
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Lemma 2,3 l The lower envelope O* of any finite collection of functions 
0s E 8 (i = 1, 2, . . ., m) defined by the equality 

belongs to set 8. 
Lemma 2.2 and 2.3 are proved by simple verification of conditions 1’ - 3 * for 

the unctions o* of (2.4) and o* of (2.5). 
For the next statement we introduce some notation. Let x E X6 and B>O; 

we set 

a* (3, B) = 0 (2) - min (0 (Y)): Y E X6 n 8 @, NJ 
s @t 0) = IYE IF: II Y - x II < PI 

cl* @I = max {fa, (x, 8) : 5 E Xd} 

d (a) = d* (a exp I (S - 20)) (a > 0) 

where a. is the Lipschitz constant with respect of variable z in the domain H X 
P X Q for function f . We note that the continuity of function a implies d (a) + 

0 as ez -+ 0. 

Lemma 2,4. For any points (t*, +) E H and (2,, x*) E H and for 
every function 0 E Q we can construct a function 0’ e Q satisfying the inequality 

a0 (t*? x:*) < 63 (t*, x*:*) + d (II SC, - x* II) (2.6) 

We present the proof of this lemma. Let 

r (t) = 11 x* - 5* 1 exp ?b (t - t*) 

We consider the function Tj:H*R defined by the equality 

? 0, 5) = min (0 (r, Y) : Y E Xt n S (5, r 0))) + d (II Z* - Z* II) 

It can be proved that function 11 satisfies the inequalities 

q (r*, z*) d 0 fr*, 5*) + d (II Z* - 9 ID, 9 @, 3) > o (~1 for 3 = X, 

is contjmrous and that condition 3 ‘is satisfied for it. Further, it can be verified that the func- 
tion 

o” (t, z) = min I? 0, s), w (t, 511, (t, z) = H 

belongs to class Q and satisfies inequality (2.6 1, 
We investigate the lower envelope of family Q 

00 (1, 3) = inf (0 (t, 5): 0 E 611, (t, X) E R (2.7) 

The following statement is valid. 

Theorem 2.1, The function o. of(2.7)isupper-semicontinuouson H; the 
function era is continuous in x on Xt for each t E fro, @j ; the relations 

00 @, sJ) = o (x), 5 E xit (2.8) 

are valid. 

inf min max 00 (r*, x) > 00 (k x*) 
!‘E[P, S] UEp IEG (P, t., x*, u) 

V@** 2,)EE t*<* 

(2.9) 



Proof, The u~~r~semi&~~nuity of function Wo fallows directly from its de _ 
finition as the lower envelope of the set Q of cantinuous functions. The cuntlnuity 
in I of function 00 derives from Lemma 2.4, Equality (2,8 ) follows immediately 
#from (2,1) and (2. ‘7 ). Let us prove inequality (2. 9 >. We assume the contrary. Let a 
point (1+, +) E B, thhe numbers ‘G e (I* t fij and a > 0 and the control 

u* E P exist such that 

XrmX 
+Gz CT* f,. x** %I 

@o @,5) < 00 (II*, 5*,) - 31x (2. fO) 

3y the def~~~ti~n of ~cUun 00 we can find t for any point x* E G* = G (z, I,, 

x* ) 11*) t a function W ( * /5*) E Q so as to fulfilf the inequality 0 (z, e* / 22”) 

< % k $9 -#-a* The functions o8 (zl zf and w (c, 5 f 2*) are continuous 
in J: ; therefore t a number fi @*) > 0 exists for any point 2* & G* , such that 

0 (z, 5 1 x”) \c 00 (T, cc) + 2a for z E s Ix*, p (~“99 
We obtain a covering of compacturn G* by spheres S (z*, p (z*)). From this 
covering we can separate a finite subcovering Si (8 = 1, . ) ., m) so that 

wg (z, t) < we (=& z) + ZCC, 2 F= St (t = 2,2 I. - f , I?:) @*xl) 

where tl-ie Of are some fur&ions from a. Let tit be the lower envelope of the aggre- 
gate (St2$, i = i, 2, l s l , m). According to Lemma 2.3, o* E fz, and ~neq~a~ty 

%+I (T, $I< 00 f% 21 + 2a, 2 Cz G” (2.12) 

folk~ws from (2, Kl), We introduce into consideration the function a* of (2.4) for 
the function 63) \I According to Lemma 2.2 p co* E a, Theinequality o* (it*, x*) 

< max (04 (TY g*‘> : X* E G*) follows directly from the definition of set 
G* = G (z, 2, , z+, u*) and of function CO* of (2,4),Allowingforestimates(2.12) 

and (2.10 ) t this inequality can be prolonged as follows : 

Thus I we find that a function @* CZ Q exists for which O* ft*, x*) < oa (t;, ) ST*). 
We have arrived at a co~~ad~ct~on with the definition of function oO. unequals 

(2,9 ) and Theorem 2.1 have been prooved t 

3 l Let us show that 

a0 @,, x*9 = co v*, x*97 G*, x*9 E ff (3.1) 

where Co (t* , J: > is the differential game’s value in the. class of pure positian 
strategies U -+- 

p 
zt (s, 3) and counterstrategies V” -+- 21’ (5, 5, U) for the initial 

position (t*, SC*.. At first we present the following statement, 

Lemma 3,3, Theset 
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To prove this lemma we can consider the set 

wa = ((I, 4 E J?: @ (1, d< c + a (I - ko)) (a > 0) 

and, using (2.2 ) , verify that it is U* -stable, Then the u, -stability of the set W 
of (3.2) can be obtained as a consequence of the U* -stability of set W, in the lim- 
it as a --f 0. 

Also valid is the following 

Lemma 3.2, Theset 

W@yC = ((t, CC) E N: 00 (t, z)\< c) 

is v-stable [3 ] for any number c . 

(3.3) 

The validity of this lemma follows immediately from (2.9). We make use of 
Lemmas 3.1 and 3.2 to prove equality (3.1). For a specified position (t, , ST*:*) and 
for some number fi > 0 we define a function 0~ so as to fulfill the inequality 
wp (t*, r+) < o. (t*, sJ + p. Weconstmcta positionstrategy Up -+- +j (t, 2) 

extremal to set W of (3.2) wherein o = ofi and c = wp (t*, cc,). Then, ac - 
cording to the results in [3 3, the inequality 

max CJ (4: 5 E X 1% t,, x*, U&j < (G~ (t*, x*) -k p 

is valid for this strategy. 

(3.4) 

Here and below X [6; t,, xsr UJ and X [8, t,, x*, PI are the sets of 
points II: Ie; t,, z*, U] and 3 [S; t,, x8, Vu] that are realized at instant e by 
all possible motions generated by strategies U +- u (t, x) and counterstrategies 

VU4 v (t, 5, u) , respectively. On the other hand, the inequality 

min ((z (cr) : 5 E X IS; t,, x*, Few]) > a0 (t*,, x+.J (3.5) 

is valid for the counterstrategy V,u -+- u (t, x, u) extremal to the set PV”yc of 
(3.3) wherein c = o, (t*, z,) As p -+ 0 , from (3.4) and (3.5) we obtain 

i;f max (a (x) :x f5 X I@; t,, x*, U]} = (3.6) 

max min (a (2) :x E X [6; t,, x*Pf} 
V” 

Hence it follows that the quantity % (t+, 5*:) coincides with the value CO (&, &) 
of the differential game in the class of strategies &’ t ZJ (#, 2) and C~nterStrategieS 
VU& . u (& z, u). 

It is well known that not only all s&s E’ of (3.2) but also the set 

w,” = ((11, 2) Ez H: 00 (1, n) = co (t, 2) Q c} (3.7) 

corr~~nd~ng to the lower envelope 00 = Co and to any number C are Z&-stable. 

The lower bound in (3.6 ) is reached by the strategy 0, +- 24, (4 5) exrremal to the 
set We* of(3.7) with C F= CII (&s %f. It is well known also that the function 

co = o. is continuous on H. 
We note the following circumstance, As shown above, the uy: -stability of the 

set IV of (3.2) follows from the condition @EQ . However ) the converse is 
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false, i. e. S the membership of a function o. to class St does not follow from the 
~*-s~b~~ of set WC0 of (3.7 ). As an example, where the lower envelope o. 

does not satisfy condition 3 “, we can cite the well-known game [l] specified by the 
equation 

and by the ~nc~on o (3) = 1 x1 [ . Here 

lim min max 00 P, 4 - 00 tt*, z*) 
t*-rt,+ouEP XEG (t*, t,, 2,. u) t* - t* 

=24*>0 

at points (b, z*), where 1,+, E [1, 2) and +,I + (2 - 1)&:, = 0. 

4. Let us consider the case when co = o. E a. In this case we construct a 
position strategy u” -+- U* (1, Z) optimal in-the-large, for which the inequality 

u (3 [Sll) < es ( 7, 5 [%I) is valid for any motionx [tl = x [t; t,, x*, U”i and any 
instant z E k, , +I. We note that the strategy U, extremal to theset W,*O of(l.2) 
ensures the fulfillment of the inequality U (2. [a]) < co (1,, x*) for the specified 
initial position (2*, X*) ; but an instant z E [t,, #f and a motion 2 [d = 2 16 

1 *7 %, u=l can exist such that a (a: [&I) > co(q x [TJ ). 
It is well known that the strategy u” + U” (t, z) , optimal in-the-large,can be 

constructed when the function CO is continuously differentiable in t and in z at 
points (t, z) E H where c,, (t, Z) > oO = min (0 (I) : x E X6) [3 1. As an example 
in which the function CO = a0 is not continuously differentiable but does belong to 
theclass Q of generalized Bellman functions, we can cite the game specified by the 
equations q‘ = IS, zs’ = x4, zz’ g u, - ~1, x4* = rfz - var f u1 1 sg h,, J up 1 < 

a % h,, (Q + u.2 1 d &, % < A, and by the function u (z) = xl2 + zss. 
Thus, let o. E a. For a positive parameter a we define the functions 6, : 

I? + I? and u, : I? -+ ?’ which associate with the point (t*, x*) E H a num- 
ber & (t, , x& > 0 and a vector u, (&, 5) E P satisfying the inequality 

max, a0 (t* + & (l,, x*), 4 < o. (t,, ~1 + a& (&, 4 

z:G(&Z +6, tt*,x*:*),t*,z*, Uo:(t*,%J 

The existence of such functions 6, and U, follows from (2.2 ) , We now assume that 
the function 7.8: H --f P associates a vector u” (t,+., x*) with the point (t*, 5*) 

E H , which is the limit of some sequence uas (t*, z*) (k = 1, 2, , . .), where 
a$$-+ 0 as k + oc (the secwnce of numbers ak depends I in general I on the 

point (E,, a$,) 1. To determine the motions generated by strategy v” -+- u” (E, X) 
we require the functiar de’: H --h R. This function is defined as follows : for a pre- 
scribed parameter e > 0 and for the point (1,. x.J E N we determtne a number 
a, > 0 so as to fulfil the inequality 

It u* (t** x*1 - =u* O*, x*1 1 < a, a* < a 

and we set 6,” (t*, x,& = &, (t*, z*). We define the motion x [t; h., , x*, CT”] 

(t* < 1 < 4) generated by strategy U” + U” (2, z) as the limit of a sequence 
of Ekrler polygonal lines. However, in contrast to [3 1, wherein the partitionings A of 
the segment [t*, 61 can be selected in advance at the.initialinstant, here we examine 
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partitionings A that are formed during the game by the function 8,“. For a chosen 
parameter E > 0 and for the control n [tj (1, < t < @) realized by the second 
player, the approximate motion (Euler polygonal line) z [tl = x [1; t,, x,, u”, 

u [. 1, S,OJ can be rnea~g~~y determined as the motion generated by the second 
player’s control u [tl (t, \< t < 3) and by the first player’s piecewise-constant control 

u [tl = u” (T’, x IT’]), z’ < t < IT’ + 6,” (z’, 5 WI) 

Formally the approximate motion x [t; t,, x,, U”, u [ -1, &’ 1 is determined 
in accord with [5]. Then, every limit, uniform on It,, @I , of the sequence of ap- 
proximate motions x IS; le,, 5*, u”, uk: 1.1, 8elr01, where e, > 0 (k = 1, 2, i . .) 
is some sequence of numbers converging to zero, is called a motion x [t; t,, xq:, v”f. 
It can be shown that under the given definition of motions the strategy U” t- u” (1, x) 
is optimal in-the -large. 

When co = o. Ef i;z we can construct a strategy U(e) .+ n(e) (t, x), e-optimal 
in-the-large, for which the inequality a (z [ej) < es (t, 2 ii]) + a is valid for 
any instant t E [t,, 61 and for every motion t [t] = x [t; t, , xt, U(e)] . The con- 
struction of this strategy and of the motions it generates canbe given within the frame- 
work of an extremal construction [3]. 
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